Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Infect Dis ; 122: 38-45, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2036061

ABSTRACT

OBJECTIVES: Selenium deficiency can be associated with increased susceptibility to some viral infections and even more severe diseases. In this study, we aimed to examine whether this association applies to severe fever with thrombocytopenia syndrome (SFTS). METHOD: An observational study was conducted based on the data of 13,305 human SFTS cases reported in mainland China from 2010 to 2020. The associations among incidence, case fatality rate of SFTS, and crop selenium concentration at the county level were explored. The selenium level in a cohort of patients with SFTS was tested, and its relationship with clinical outcomes was evaluated. RESULTS: The association between selenium-deficient crops and the incidence rate of SFTS was confirmed by multivariate Poisson analysis, with an estimated incidence rate ratio (IRR, 95% confidence interval [CI]) of 4.549 (4.215-4.916) for moderate selenium-deficient counties and 16.002 (14.706-17.431) for severe selenium-deficient counties. In addition, a higher mortality rate was also observed in severe selenium-deficient counties with an IRR of 1.409 (95% CI: 1.061-1.909). A clinical study on 120 patients with SFTS showed an association between serum selenium deficiency and severe SFTS (odds ratio, OR: 2.94; 95% CI: 1.00-8.67) or fatal SFTS (OR: 7.55; 95% CI: 1.14-50.16). CONCLUSION: Selenium deficiency is associated with increased susceptibility to SFTS and poor clinical outcomes.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Selenium , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , China/epidemiology , Fever/epidemiology , Humans , Thrombocytopenia/epidemiology
2.
BMC Microbiol ; 21(1): 351, 2021 12 18.
Article in English | MEDLINE | ID: covidwho-1840945

ABSTRACT

BACKGROUND: The 2019 novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) is a current worldwide threat for which the immunological features after infection need to be investigated. The aim of this study was to establish a highly sensitive and quantitative detection method for SARS-CoV-2 IgG antibody and to compare the antibody reaction difference in patients with different disease severity. RESULTS: Recombinant SARS-CoV-2 nucleocapsid protein was expressed in Escherichia coli and purified to establish an indirect IgG ELISA detection system. The sensitivity of the ELISA was 100% with a specificity of 96.8% and a 98.3% concordance when compared to a colloidal gold kit, in addition, the sensitivity of the ELISA was 100% with a specificity of 98.9% and a 99.4% concordance when compared to a SARS-CoV-2 spike S1 protein IgG antibody ELISA kit. The increased sensitivity resulted in a higher rate of IgG antibody detection for COVID-19 patients. Moreover, the quantitative detection can be conducted with a much higher serum dilution (1:400 vs 1:10, 1:400 vs 1:100). The antibody titers of 88 patients with differing COVID-19 severity at their early convalescence ranged from 800 to 102,400, and the geometric mean titer for severe and critical cases, moderate cases, asymptomatic and mild cases was 51,203, 20,912, and 9590 respectively. CONCLUSION: The development of a highly sensitive ELISA system for the detection of SARS-CoV-2 IgG antibodies is described herein. This system enabled a quantitative study of rSARS-CoV-2-N IgG antibody titers in COVID-19 patients, the occurrence of higher IgG antibody titers were found to be correlated with more severe cases.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Child , Child, Preschool , China , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
3.
Clin Infect Dis ; 75(1): e1054-e1062, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1758700

ABSTRACT

BACKGROUND: To combat the coronavirus disease 2019 (COVID-19) pandemic, nonpharmaceutical interventions (NPIs) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARIs). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for 8 viral pathogens (influenza virus [IFV], respiratory syncytial virus [RSV], human parainfluenza virus [HPIV], human adenovirus [HAdV], human metapneumovirus [HMPV], human coronavirus [HCoV], human bocavirus [HBoV], and human rhinovirus [HRV]) between 2012 and 2021, were analyzed to assess the changes in respiratory infections in China during the first COVID-19 pandemic year compared with pre-pandemic years. RESULTS: Test-positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17.2% for RSV to -87.6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year-round, RSV, HPIV, HCoV, HRV, and HBoV resurged and went beyond historical levels during September 2020-January 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children <18 years and in northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.


Subject(s)
COVID-19 , Human bocavirus , Metapneumovirus , Orthomyxoviridae , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , COVID-19/epidemiology , Child , Humans , Pandemics , Parainfluenza Virus 1, Human
4.
Nat Prod Bioprospect ; 12(1): 4, 2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1682152

ABSTRACT

The most recent outbreak of 2019 novel coronavirus, named as COVID-19, caused pneumonia epidemic in Wuhan with 2121 deaths cases as of February 20th 2020. Identification of effective antiviral agents to combat the novel coronavirus is urgently needed. Citrus fruit peel or wild citrus are rich in flavonoids, and clinically documented for roles in relief of cough and promotion of digestive health. Therefore, citrus fruits are assumed to possess antivirus activities or enhance the host immunity. A previous study found that hesperetin could act as a high potent inhibitor of SARS-CoV 3CLpro. We determined six flavonoid compounds' content in three citrus species by using LC-MS technique. The content of naringin and naringenin was at higher levels in pummelo. Hesperetin and hesperidin were highly accumulated in mandarin and sweet orange. The subsequent in vitro and in vivo experiments indicated that naringin could inhibit the expression of the proinflammatory cytokines (COX-2, iNOS, IL-1ß and IL-6) induced by LPS in Raw macrophage cell line, and may restrain cytokine through inhibiting HMGB1 expression in a mouse model. The results revealed that naringin may have a potential application for preventing cytokine storm. We simulated molecular docking to predict the binding affinity of those flavonoids to bind Angiotensin-converting enzyme 2 (ACE 2), which is a receptor of the coronavirus. Consideration of the potential anti-coronavirus and anti-inflammatory activity of flavonoids, the citrus fruit or its derived phytochemicals are promising in the use of prevention and treatment of SARS-CoV-2 infection.

5.
Front Cardiovasc Med ; 8: 757799, 2021.
Article in English | MEDLINE | ID: covidwho-1555742

ABSTRACT

Objective: Cardiac injury is detected in numerous patients with coronavirus disease 2019 (COVID-19) and has been demonstrated to be closely related to poor outcomes. However, an optimal cardiac biomarker for predicting COVID-19 prognosis has not been identified. Methods: The PubMed, Web of Science, and Embase databases were searched for published articles between December 1, 2019 and September 8, 2021. Eligible studies that examined the anomalies of different cardiac biomarkers in patients with COVID-19 were included. The prevalence and odds ratios (ORs) were extracted. Summary estimates and the corresponding 95% confidence intervals (95% CIs) were obtained through meta-analyses. Results: A total of 63 studies, with 64,319 patients with COVID-19, were enrolled in this meta-analysis. The prevalence of elevated cardiac troponin I (cTnI) and myoglobin (Mb) in the general population with COVID-19 was 22.9 (19-27%) and 13.5% (10.6-16.4%), respectively. However, the presence of elevated Mb was more common than elevated cTnI in patients with severe COVID-19 [37.7 (23.3-52.1%) vs.30.7% (24.7-37.1%)]. Moreover, compared with cTnI, the elevation of Mb also demonstrated tendency of higher correlation with case-severity rate (Mb, r = 13.9 vs. cTnI, r = 3.93) and case-fatality rate (Mb, r = 15.42 vs. cTnI, r = 3.04). Notably, elevated Mb level was also associated with higher odds of severe illness [Mb, OR = 13.75 (10.2-18.54) vs. cTnI, OR = 7.06 (3.94-12.65)] and mortality [Mb, OR = 13.49 (9.3-19.58) vs. cTnI, OR = 7.75 (4.4-13.66)] than cTnI. Conclusions: Patients with COVID-19 and elevated Mb levels are at significantly higher risk of severe disease and mortality. Elevation of Mb may serve as a marker for predicting COVID-19-related adverse outcomes. Prospero Registration Number: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020175133, CRD42020175133.

6.
Nat Commun ; 12(1): 6923, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537314

ABSTRACT

Nationwide nonpharmaceutical interventions (NPIs) have been effective at mitigating the spread of the novel coronavirus disease (COVID-19), but their broad impact on other diseases remains under-investigated. Here we report an ecological analysis comparing the incidence of 31 major notifiable infectious diseases in China in 2020 to the average level during 2014-2019, controlling for temporal phases defined by NPI intensity levels. Respiratory diseases and gastrointestinal or enteroviral diseases declined more than sexually transmitted or bloodborne diseases and vector-borne or zoonotic diseases. Early pandemic phases with more stringent NPIs were associated with greater reductions in disease incidence. Non-respiratory diseases, such as hand, foot and mouth disease, rebounded substantially towards the end of the year 2020 as the NPIs were relaxed. Statistical modeling analyses confirm that strong NPIs were associated with a broad mitigation effect on communicable diseases, but resurgence of non-respiratory diseases should be expected when the NPIs, especially restrictions of human movement and gathering, become less stringent.


Subject(s)
Communicable Diseases/epidemiology , Disease Notification/statistics & numerical data , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Communicable Disease Control , Communicable Diseases/classification , Communicable Diseases/transmission , Humans , Incidence , Models, Statistical , SARS-CoV-2
7.
mBio ; 12(5): e0137221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462899

ABSTRACT

Interleukin6 (IL-6) is a key driver of hyperinflammation in COVID-19, and its level strongly correlates with disease progression. To investigate whether variability in COVID-19 severity partially results from differential IL-6 expression, functional single-nucleotide polymorphisms (SNPs) of IL-6 were determined in Chinese COVID-19 patients with mild or severe illness. An Asian-common IL-6 haplotype defined by promoter SNP rs1800796 and intronic SNPs rs1524107 and rs2066992 correlated with COVID-19 severity. Homozygote carriers of C-T-T variant haplotype were at lower risk of developing severe symptoms (odds ratio, 0.256; 95% confidence interval, 0.088 to 0.739; P = 0.007). This protective haplotype was associated with lower levels of IL-6 and its antisense long noncoding RNA IL-6-AS1 by cis-expression quantitative trait loci analysis. The differences in expression resulted from the disturbance of stimulus-dependent bidirectional transcription of the IL-6/IL-6-AS1 locus by the polymorphisms. The protective rs2066992-T allele disrupted a conserved CTCF-binding locus at the enhancer elements of IL-6-AS1, which transcribed antisense to IL-6 and induces IL-6 expression in inflammatory responses. As a result, carriers of the protective allele had significantly reduced IL-6-AS1 expression and attenuated IL-6 induction in response to acute inflammatory stimuli and viral infection. Intriguingly, this low-producing variant that is endemic to present-day Asia was found in early humans who had inhabited mainland Asia since ∼40,000 years ago but not in other ancient humans, such as Neanderthals and Denisovans. The present study suggests that an individual's IL-6 genotype underlies COVID-19 outcome and may be used to guide IL-6 blockade therapy in Asian patients. IMPORTANCE Overproduction of cytokine interleukin-6 (IL-6) is a hallmark of severe COVID-19 and is believed to play a critical role in exacerbating the excessive inflammatory response. Polymorphisms in IL-6 account for the variability of IL-6 expression and disparities in infectious diseases, but its contribution to the clinical presentation of COVID-19 has not been reported. Here, we investigated IL-6 polymorphisms in severe and mild cases of COVID-19 in a Chinese population. The variant haplotype C-T-T, represented by rs1800796, rs1524107, and rs2066992 at the IL-6 locus, was reduced in patients with severe illness; in contrast, carriers of the wild-type haplotype G-C-G had higher risk of severe illness. Mechanistically, the protective variant haplotype lost CTCF binding at the IL-6 intron and responded poorly to inflammatory stimuli, which may protect the carriers from hyperinflammation in response to acute SARS-CoV-2 infection. These results point out the possibility that IL-6 genotypes underlie the differential viral virulence during the outbreak of COVID-19. The risk loci we identified may serve as a genetic marker to screen high-risk COVID-19 patients.


Subject(s)
COVID-19/metabolism , COVID-19/prevention & control , Interleukin-6/metabolism , A549 Cells , Genotype , Haplotypes/genetics , HeLa Cells , Humans , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics , Real-Time Polymerase Chain Reaction , Software
8.
Lancet Reg Health West Pac ; 16: 100268, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415636

ABSTRACT

BACKGROUND: Non pharmaceutical interventions (NPI) including hand washing directives were implemented in China and worldwide to combat the COVID-19 pandemic, which are likely to have had impacted a broad spectrum of enteric pathogen infections. METHODS: Etiologically diagnostic data from 45 937 and 67 395 patients with acute diarrhea between 2012 and 2020, who were tested for seven viral pathogens and 13 bacteria respectively, were analyzed to assess the changes of enteric pathogen infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. FINDINGS: Test positive rates of all enteric viruses decreased during 2020, compared to the average levels during 2012-2019, with a relative decrease of 71•75% for adenovirus, 58•76% for norovirus, 53•50% for rotavirus A, and 72•07% for the combination of other four uncommon viruses. In general, a larger reduction of positive rate in viruses was seen among adults than pediatric patients. A rebound of rotavirus A was seen after September 2020 in North China rather than South China. Test positive rates of bacteria decreased during 2020, compared to the average levels during 2012-2019, excepting for nontyphoidal Salmonella and Campylobacter coli with 66•53% and 90•48% increase respectively. This increase was larger for pediatric patients than for adult patients. INTERPRETATION: The activity of enteric pathogens changed profoundly alongside the NPIs implemented during the COVID-19 pandemic in China. Greater reductions of the test positive rates were found for almost all enteric viruses than for bacteria among acute diarrhea patients, with further large differences by age and geography. Lifting of NPIs will lead to resurgence of enteric pathogen infections, particularly in children whose immunity may not have been developed and/or waned. FUNDING: China Mega-Project on Infectious Disease Prevention; National Natural Science Funds.

9.
Chinese Journal of Virology ; 36(4):578-580, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1407615

ABSTRACT

Since December 2019, an outbreak of pneumonia (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-Z) has been widespread in the world. Investigation of Virus spread is a constant research focus. At present, SARS-CoV-Z has not been detected in livestock, poultry, or fur animals. This study focused on the traceability of SARS-CoV-Z in rare and endangered migratory birds. A total of 383 samples (throat swabs, anal swabs and fecal samples) were collected from 10 types of rare or endangered migratory bird, including mallard, white duck, pheasant, swan goose and white swan, in Jilin Province, China, between September 2019 and April 2020. Real-time RT-PCR, as recommended by the World Health Organization, was used to detect SARS-CoV-Z in these samples. SARS-CoV-Z was not detected in any of the samples.

10.
Front Cardiovasc Med ; 8: 698923, 2021.
Article in English | MEDLINE | ID: covidwho-1348469

ABSTRACT

Objective: The COVID-19 pandemic placed heavy burdens on emergency care and posed severe challenges to ST-segment-elevation myocardial infarction (STEMI) treatment. This study aimed to investigate the impact of COVID-19 pandemic on mechanical reperfusion characteristics in STEMI undergoing primary percutaneous coronary intervention (PPCI) in a non-epicenter region. Methods: STEMI cases undergoing PPCI from January 23 to March 29 between 2019 and 2020 were retrospectively compared. PPCI parameters mainly included total ischemic time (TIT), the period from symptom onset to first medical contact (S-to-FMC), the period from FMC to wire (FMC-to-W) and the period from door to wire (D-to-W). Furthermore, the association of COVID-19 pandemic with delayed PPCI risk was further analyzed. Results: A total of 14 PPCI centers were included, with 100 and 220 STEMI cases undergoing PPCI in 2020 and 2019, respectively. As compared to 2019, significant prolongations occurred in reperfusion procedures (P < 0.001) including TIT (420 vs. 264 min), S-to-FMC (5 vs. 3 h), FMC-to-W (113 vs. 95 min) and D-to-W (83 vs. 65 min). Consistently, delayed reperfusion surged including TIT ≥ 12 h (22.0 vs.3.6%), FMC-to-W ≥ 120 min (34.0 vs. 6.8%) and D-to-W ≥ 90 min (19.0 vs. 4.1%). During the pandemic, the patients with FMC-to-W ≥ 120 min had longer durations in FMC to ECG completed (6 vs. 5 min, P = 0.007), FMC to DAPT (24 vs. 21 min, P = 0.001), catheter arrival to wire (54 vs. 43 min, P < 0.001) and D-to-W (91 vs. 78 min, P < 0.001). The pandemic was significantly associated with high risk of delayed PPCI (OR = 7.040, 95% CI 3.610-13.729, P < 0.001). Conclusions: Even in a non-epicenter region, the risk of delayed STEMI reperfusion significantly increased due to cumulative impact of multiple procedures prolongation.

11.
Int J Med Sci ; 18(6): 1474-1483, 2021.
Article in English | MEDLINE | ID: covidwho-1089156

ABSTRACT

Background: For coronavirus disease 2019 (COVID-19), early identification of patients with serious symptoms at risk of critical illness and death is important for personalized treatment and balancing medical resources. Methods: Demographics, clinical characteristics, and laboratory tests data from 726 patients with serious COVID-19 at Tongji Hospital (Wuhan, China) were analyzed. Patients were classified into critical group (n = 174) and severe group (n= 552), the critical group was sub-divided into survivors (n = 47) and non-survivors (n = 127). Results: Multivariable analyses revealed the risk factors associated with critical illness in serious patients were: Advanced age, high respiratory rate (RR), high lactate dehydrogenase (LDH) level, high hypersensitive cardiac troponin I (hs-cTnI) level, and thrombocytopenia on admission. High hs-cTnI level was the independent risk factor of mortality among critically ill patients in the unadjusted and adjusted models. ROC curves demonstrated that hs-cTnI and LDH were predictive factors for critical illness in patients with serious COVID-19 whereas procalcitonin and D-Dimer with hs-cTnI and LDH were predictive parameters in mortality risk. Conclusions: Advanced age, high RR, LDH, hs-cTnI, and thrombocytopenia, constitute risk factors for critical illness among patients with serious COVID-19, and the hs-cTnI level helps predict fatal outcomes in critically ill patients.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/pathogenicity , Troponin I/metabolism , Aged , COVID-19/pathology , Critical Illness , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Middle Aged , Prognosis , Retrospective Studies
12.
Epidemiol Infect ; 148: e255, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-974837

ABSTRACT

To determine what exacerbate severity of the COVID-19 among patients without comorbidities and advanced age and investigate potential clinical indicators for early surveillance, we adopted a nested case-control study, design in which severe cases (case group, n = 67) and moderate cases (control group, n = 67) of patients diagnosed with COVID-19 without comorbidities, with ages ranging from 18 to 50 years who admitted to Wuhan Tongji Hospital were matched based on age, sex and BMI. Demographic and clinical characteristics, and risk factors associated with severe symptoms were analysed. Percutaneous oxygen saturation (SpO2), lymphocyte counts, C-reactive protein (CRP) and IL-10 were found closely associated with severe COVID-19. The adjusted multivariable logistic regression analyses revealed that the independent risk factors associated with severe COVID-19 were CRP (OR 2.037, 95% CI 1.078-3.847, P = 0.028), SpO2 (OR 1.639, 95% CI 0.943-2.850, P = 0.080) and lymphocyte (OR 1.530, 95% CI 0.850-2.723, P = 0.148), whereas the changes exhibited by indicators influenced incidence of disease severity. Males exhibited higher levels of indicators associated with inflammation, myocardial injury and kidney injury than the females. This study reveals that increased CRP levels and decreased SpO2 and lymphocyte counts could serve as potential indicators of severe COVID-19, independent of comorbidities, advanced age and sex. Males could at higher risk of developing severe symptoms of COVID-19 than females.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/etiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Adolescent , Adult , Age Factors , Area Under Curve , C-Reactive Protein/analysis , COVID-19 , Case-Control Studies , China/epidemiology , Coronavirus Infections/complications , Female , Humans , Incidence , Inflammation/etiology , Length of Stay , Logistic Models , Lymphocyte Count , Male , Middle Aged , Oxygen/metabolism , Pandemics , Pneumonia, Viral/complications , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Young Adult
14.
Res Social Adm Pharm ; 17(1): 1853-1858, 2021 01.
Article in English | MEDLINE | ID: covidwho-548161

ABSTRACT

BACKGROUND: The practical experiences of active pharmacists involved in managing critically ill patients with coronavirus disease 2019 (COVID-19) have been rarely reported. OBJECTIVE: This work aimed to share professional experiences on medication optimization and provide a feasible reference for the pharmaceutical care of critically ill patients with COVID-19. METHODS: This study was conducted in a COVID-19-designated hospital in China. A group of dedicated clinical pharmacists participated in multidisciplinary rounds to optimize the treatments for critically ill patients with COVID-19. Consensus on medication recommendations was reached by a multidisciplinary team through bi-daily discussion. Related drug, classification, cause, and adjustment content for recommendations were recorded and reviewed. RESULTS: A total of 111 medication recommendations were supplied for 22 out of 33 (56.7%) critically ill patients from 1 February 2020 to 18 March 2020, and 106 (95.5%) of these were accepted. Among these recommendations, 64 (67.7%), 32 (28.8%), and 15 (13.5%) were related to antibiotics and antifungals, antiviral agents, and other drugs, respectively. Recommendation types significantly differed for different anti-infectives (p < 0.05). For antibiotics and antifungals, treatment effectiveness accounted for 60.9% of recommendation types, with 15 (38.5%) cases related to untreated infections. For antiviral agents, adverse drug events were the most common recommendation types (84.4%), with 20 (74.1%) cases related to liver function dysfunction. Discontinuation of suspected antiviral agents (66.7%) was usually recommended after the occurrence of adverse events that may progress and bring poor outcomes. CONCLUSION: Forceful and extensive on-ward participation is recommended for clinical pharmacists in managing critically ill patients. Our experiences highlight the need for special attention toward untreated infections and adverse events related to antiviral agents.


Subject(s)
COVID-19/therapy , Intensive Care Units , Pharmacists/organization & administration , Pharmacy Service, Hospital/organization & administration , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , China , Critical Illness , Female , Humans , Male , Middle Aged , Patient Care Team/organization & administration , Professional Role , Retrospective Studies , COVID-19 Drug Treatment
15.
Sci Total Environ ; 736: 139611, 2020 Sep 20.
Article in English | MEDLINE | ID: covidwho-419198

ABSTRACT

The onset of coronavirus pandemic has sparked a shortage of facemasks in almost all nations. Without this personal protective equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. In light of the aforementioned, it is critical to balance the supply and demand for masks. COVID-19 will also ensure that masks are always considered as an essential commodity in future pandemic preparedness. Moreover, billions of facemasks are produced from petrochemicals derived raw materials, which are non-degradable upon disposal after their single use, thus causing environmental pollution and damage. The sustainable way forward is to utilise raw materials that are side-stream products of local industries to develop facemasks having equal or better efficiency than the conventional ones. In this regard, wheat gluten biopolymer, which is a by-product or co-product of cereal industries, can be electrospun into nanofibre membranes and subsequently carbonised at over 700 °C to form a network structure, which can simultaneously act as the filter media and reinforcement for gluten-based masks. In parallel, the same gluten material can be processed into cohesive thin films using plasticiser and hot press. Additionally, lanosol, a naturally-occurring substance, imparts fire (V-0 rating in vertical burn test), and microbe resistance in gluten plastics. Thus, thin films of flexible gluten with very low amounts of lanosol (<10 wt%) can be bonded together with the carbonised mat and shaped by thermoforming to create the facemasks. The carbon mat acting as the filter can be attached to the masks through adapters that can also be made from injection moulded gluten. The creation of these masks could simultaneously be effective in reducing the transmittance of infectious diseases and pave the way for environmentally benign sustainable products.


Subject(s)
Communicable Disease Control/instrumentation , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , Biomedical Technology , COVID-19 , Catechols/chemistry , Filtration/instrumentation , Glutens/chemistry , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL